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ABSTRACT

Compositions and textures of melt rocks from the upper part of the Chicxulub struc-

ture are typical of melt rocks at other large terrestrial impact structures. Apart from

variably elevated iridium concentrations (<1.5 to 13.5 __. 0.9 ppb) indicating nonuniform

dissemination of a meteoritic component, bulk rock and phenocryst compositions imply

that these melt rocks were derived exclusively from continental crust and platform-sedi.

ment target lithologies. Modest differences in bulk chemistry among samples from wells

located -40 km apart suggest minor variations in relative contributions of these target

lithologies to the melts. Subtle variations in the compositions of early-formed pyroxene and

plagioclase also support minor primary differences in chemistry between the melts. Evi-

dence for pervasive hydrothermal alteration of the porous mesostasis includes albite,

K-feldspar, quartz, epidote, chlorite, and other phyllosilicates, as well as siderophile el-

ement-enriched sulfides, suggesting the possibility that Chicxulub, like Sudbury, may host
important ore deposits.

INTRODUCTION

This report presents detailed petro-

graphic descriptions and chemical analy-

ses of igneous-textured rocks from the

Chicxulub structure in Yucatfin, Mexico.

A suite of observations including diagnos-

tic evidence of shock metamorphism

(Sharpton et al., 1992), isotopic signatures

(Sharpton et al., 1992; Swisher et al., 1992;

Blum et al., 1993; Krogh et al., 1993), and

geophysical constraints (Sharpton et al.,

1993) provide compelling arguments that

the Chicxulub structure is a buried multiring

basin formed by hypervelocity impact and is
the source of ejecta distributed worldwide at

the Cretaceous-Tertiary (K-T) boundary, 65

m.y. ago (Alvarez et al., 1980). Nevertheless,

some workers dispute its impact origin and

continue to proffer opinions that the

Chicxulub structure is a volcanic sequence

of Late Cretaceous age (Meyerhoff et al.,

1994). These opinions are based in part on

early well-log descriptions of andesite and

bentonitic breccia--now recognized as a se-

quence of impact-melt rock and suevitic

breccia (Sharpton et al., 1992). The strati-

graphic sequence involved in the impact

event includes -2.5 km of platform sedi-

ments over crystalline basement of conti-

nental affinity (Lopez Ramos, 1975; Sharp-

ton et al., 1994a). With estimates of its

diameter ranging from 180 to 300 km,

(Hildebrand et al., 1991; Sharpton et al.,

1993), Chicxulub is clearly one of the largest

and best-preserved impact structures on

Earth. Consequently, it provides a unique

opportunity to observe, on a variety of

scales, the effects of processes involved in

the formation and evolution of large impact-
melt sheets, as well as the relation between

these main melt volumes and globally dis-

persed ejecta.

At present, however, samples of melt rock

from within the structure are limited, and it

is unclear whether any of them represent

material from a continuous melt sheet. Our

samples were obtained from drill cores re-

covered from Petr61eos Mexicanos explor-

atory wells Chicxulub 1 (CI) and Yucat_in 6

(Y6), located -40 km apart near the center

of the structure (Sharpton et al., 1993). Spe-

cifically, they comprise material from the
C1-NI0 interval, 1393-1394 m below sea

level (bsl), and from intervals Y6-N17

(1295.5-1299 m bsl) and Y6-NI9 (1377-

1379.5 m bsl). Although initial studies of

samples from these and the adjacent CI-N9

intervals have been published (Hildebrand

et al., 1991; Kring and Boynton, 1992;

Swisher et al., 1992; Sharpton et al., 1992;

Blum et al., 1993; Koeberl et al., 1994), a

coordinated evaluation of whole-rock major

and trace element chemical analyses to-

gether with compositional variations among

the principal liquidus phases has not been

published previously. Here we present ad-

ditional geochemical and textural character-

izations of those Chicxulub melt rocks cur-

rently available to us in order to provide
further constraints on their formation and

evolution.

PETROGRAPHY

Melt-rock textures of the three core in-

tervals are distinctly different (Fig. 1), most

notably in the size and abundance of undi-

gested clasts, variations in color, grain size,

and porosity of the matrix, and evidence of

alteration. Clasts in Y6-N17 constitute

-35% of the rock and show a bimodal size

distribution dominated by single mineral

fragments and polycrystalline domains of

highly deformed, recrystallized quartz and

feldspar <1 mm in length, with larger frag-

ments up to 4 mm (Fig. IA). Subhedral,

stubby to skeletal pyroxene prisms (10-70

_m long) enclosed in quartz (some bor-

dered by anhydrite) form coronas surround-

ing quartz clasts and pervade the interiors of

more highly disrupted granitic domains,

with aggregates up to 1 mm. In some ex-

treme instances, a glomerophyric cluster of

pyroxene is the only visible remains. Such

pyroxenes are confined to individual quartz

and quartz-rich granitic fragments and are

notably absent around feldspar. Micro-

graphic intergrowths of pyroxene, magne-

tite, and vermicular feldspar form clotlike

domains in the matrix and probably rep-
resent melted but unassimilated ferro-

magnesian basement-clast components. The

matrix comprises subhedral to euhedral mi-

crophenocrysts of pyroxene and plagioclase

ranging from 5 to 15 _m in length, set in a

porous, cryptocrystalline mesostasis (Fig. IB).

Minor phases include magnetite; ilmenite;

apatite; sphene; sulfides; a hydrous, iron- and

magnesium-rich aluminosilicate; and trace

amounts of barite and halite. Anhydrite con-

stitutes -8% of the thin section, mostly as

veins and cavity fillings.

Samples from the Y6-N19 interval reveal

a melt matrix breccia (Fig. 1C) containing

2-11 cm angular to subrounded melt clasts

of at least two texturally distinct types. The

dominant melt clast type is very similar to

the surrounding matrix, and in some cases

the boundary between them is difficult to

discern. This material is also essentially sim-

ilar to Y6-NI7, consisting of 5-15-_m-long,

subhedral to euhedral pyroxene and plagio-

clase in a cryptocrystalline quartzofeld-

spathic mesostasis showing variable poros-

ity. Minor constituents include magnetite,

ilmenite, apatite, sphene, zircon, sulfides,

and a rare earth element (REE)-rich phase.

In some regions, lath-shaped pyroxene and

plagioclase microphenocrysts show a well-

developed trachytic texture interfingering

with regions of more randomly oriented

grains, which may also be aligned but in a

direction oblique to the plane of the thin

section. These alignments appear to be flow

foliations reflecting turbulent mingling of

melt. In contrast to Y6-N17, undigested sil-
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Figure 1. A: Y6-N17 melt rock, cut by anhydrite
vein (left), with abundant silicate basement
clasts (plane light, width of view = 15 mm). B:
Y6-N17 matrix showing pyroxene (Py) and pla-
gioclase (PI) microphenocrysts, in porous al-
bitic (Ab) mesostasis (backscattered-electron
image, width of view = 200 tLm). C: Y6-N19
melt breccia (width of view = 18 cm). D: C1-
N10 melt rock with finer grained melt clasts
(plane light, width of view = 15 mm). E: Cl-N10
plagioclase phenocryst (PI, Ansg.lAb39.sOrl.4),
partially replaced by albite (Ab,
Ano.4Ab_.3Oro.3), and mesostasis K-feldspar
(Kt, Anl.sAbl=.rOre_.s), quartz (Qz), and epidote
(Ep) (backscattered-electron image, scale bar
represents 100 tLm).

icate basement clasts in Y6-N19 are typically

larger (up to 8 mm diameter) and show clear

examples of planar deformation features.

Also, in addition to veins and cavity fillings,

there are undigested but recrystallized an-

gular fragments of anhydrite. As in Y6-N17,

pyroxene intergrown with quartz commonly

mantles partially digested quartz and gra-

nitic fragments.

The other melt clast type in Y6-N19 ap-

pears to be derived from a granitic or grano-

dioritic gneiss protolith that was not disag-

gregated but in which most of the silicate

mineral constituents were melted. These

clasts are predominantly anhedral quartz

and feldspar domains (up to 4 mm), which

deformed plastically around isolated frag-

ments of undigested shocked quartz, and

elongate, irregular dense regions that ap-

pear opaque in transmitted light. Reflected-

light and backscattered-electron images re-

veal that these dense regions are melt

domains composed of cryptocrystalline py-

roxene with a vermicular intergrowth of

feldspar and minute oxides. In some thin

sections, these dense, elongate regions are

roughly aligned and may reflect a relict fo-

liation of ferromagnesian minerals in the

protolith. Other opaque regions consist of

anastomosing networks of skeletal ilmenite,

intergrown with sphene. The interstices of

the silicate domains include brownish, flu-

idal-textured regions, some showing spheru-

litic textures typical of devitrification. The

anhedrat quartz domains are commonly sur-

rounded by pyroxene prisms up to 75 p_m in

length, whereas the feldspar domains, which

have nonstoichiometric compositions rang-

ing from An4sAb49Or 3 to An26Ab46Or28 ,

are mantled by a similarly nonstoichiomet-

ric but more potassic composition of

An2AbloOr88.

C1-N10 (Fig. 1D) is distinct from the Y6

samples with respect to both the virtual ab-

sence of unmelted clasts and the coarser

grain size of the matrix. The matrix is dom-

inated by an intersertal arrangement of sub-

hedral to euhedral pyroxene up to 0.7 mm
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Figure 2. Electron-micro-
probe analyses of matrix
pyroxene (A) and plagio-
clase (B) micropheno-
crysts and anhedral mes-
ostasis feldspars (C)
from C1-N10 (solid cir-
cles), Y6-N17 (solid trian-
gles), and Y6-N19 (solid
squares); open symbols
indicate nonstoichiomet-
ric compositions.
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andplagioclaseshowingarangeofcrystal
morphologiesfrom skeletal,swallowtail,
andbox-workoutlinestolath-shapedprisms
upto1mminlength.Someofthesepyrox-
eneandplagioclasephenocrystsaretwinned
andslightlyzonedtowardtheirmargins.The
mesostasisisaporousintergrowthofsodic
andpotassicfeldsparandquartz,showing
spherulitictextureinsomeregions.Minor
phasesincludemagnetite;apatite;sphene;
pyrite;chaicopyrite;chlorite;epidote;cal-
cite;andahydrous,iron-andmagnesium-
richaluminosilicate.Thematrixalsocon-
tainsangularorroundedclastsofmuchfiner
grainedmeltrock(Fig.1D).Themineralsin
thesemeltfragmentsareessentiallythe
sameasthosein thehost,althoughthe
smallerpyroxene(<100txm)andplagio-
clase(<50I_m)phenocrystsimpartamore
granulartextureandnopotassicfeldspar
wasobservedinthemesostasis,whichisless
porous.

CHEMISTRY

Whole-rock major element compositions

(Table 1) are similar to medium- to high-K

calc-alkalic andesite to dacite (Gill, 1981).

Results for Y6-N17 generally agree with

those published elsewhere (Hildebrand et

al., 1991). As expected from the variegated

lithology of the Y6-NI9 breccia, these sub-

samples exhibit some compositional varia-

bility, but on average are significantly lower

in SiO2 and Na20 and higher in CaO than
either Y6-N17 or C1-NI0.

Trace element concentrations are also

similar to those of andesites, with the only

significant departure being anomalous Ir en-

richments in several of the specimens. Con-

centrations in two fragments of C1-N10 and

duplicate splits of C1-N10-2 and Y6-N19-R

are identical within analytical uncertainties

except for Ir and Au; the C1-N10 analyses

also show heterogeneity for Cr and Co (Ta-

ble 1). The Y6-N19 subsamples span nearly

the total range of variation among speci-

mens from the three core intervals for many

elements. The C1-N10 samples exhibit mod-

est enrichments in Co, Zr, Hf, Ta, and heavy

REEs (HREEs), and lower Sr relative to the

Y6 specimens.

Pyroxene phenocryst compositions in our

samples from all three core intervals are ex-

clusively augite and, predictably, lie within

the range of augite core compositions

(En4o_ssWo38_5oFs7_2o) in andesites (Gill,

1981). The coarser grains of the C1-N10

matrix show an iron-enrichment trend

(Fig. 2A), with modest, corresponding in-

creases in Na20, TiO2, and MnO. These

variations also characterize the extent of

core to rim zoning within individual pheno-

crysts, the increase of Fe occurring abruptly

near crystal margins. Compositions within

the finer-grained melt clasts in C1-N10 form

a relatively tight duster with an average

composition of En4_Wo42Fs9. Our analyses

of augite microphenocrysts in Y6-N17 and

Y6-N19 yield an average (Ena3Wo45Fs12)

consistent with those of Kring and Boynton

(1992), but contrast with the fassaitic com-

positions reported by Cediilo et al. (1994).

Compared to those in C1-N10, augites in

Y6-N17 and Y6-N19 are generally lower in

SiO 2 and molar Mg/(Mg + Fe), and higher

in Na20, TiO2, and MnO. Apart from

slightly higher SiO2, there are no significant

compositional differences between augite

microphenocrysts in the groundmass and

those bordering undigested quartz clasts.

Although the feldspar mineral assem-

blage as a whole shows considerable chem-

ical variability, plagioclase is the only feld-

spar present as a phenocryst. Consequently,

those early-formed plagioclase crystals that
have not suffered extensive alteration

(Fig. 2B) define a more restricted range of

variation (andesine to labradorite) and thus

are compositionally as well as texturally dis-

tinct from feldspars in the surrounding

mesostasis (Fig. 2C). With decreasing An

content (An59_32), coarser plagioclase phe-

nocrysts in the C1-N10 matrix show a cor-

responding monotonic decrease in MgO,

and an initial Fe-enrichment trend that at-

tains a maximum at Anso, followed by a de-

crease in FeO. Plagioclase phenocrysts

within the finer-grained melt clasts of C1-

N10 tend to be more calcic, relatively con-

stant in MgO, and higher in FeO, with an

Fe-enrichment maximum at An56. Analyses

of Y6-N17 and Y6-N19 are generally higher

in I(20 and FeO and lower in MgO than
those of C1-N10 and are consistent with the

average composition of groundmass plagio-

clase in Y6-N 17 published previously (Kring

and Boynton, 1992).

The mesostasis of C1-N10 (Fig. 2C) in-

cludes alkali feldspar and plagioclase rang-

ing from oligoclase to pure albite. An exam-

ple of the textural relations of these

feldspars to a euhedral plagioclase pheno-

cryst (Fig. 1E) shows that albite forms at the

expense of the caicic host, which in turn is

surrounded by anhedral K-feldspar inter-

grown with quartz, epidote, minute opaque

minerals, and a cryptocrystalline alumino-

silicate that appears to be a devitrification

product of glass. Feldspar compositions in

the mesostasis of Y6-N17 are highly variable

(Fig. 2C); however, with the exception of

albite, our analyses indicate that they are

nonstoichiometric. These anhedral, cation-

deficient phases fill the interstices of the

andesine and augite microphenocrysts, some

of which protrude into the ubiquitous drusy

cavities (Fig. 1B). Thermodynamic consid-

erations together with textural relations be-

tween early-formed phases and the porous

mesostasis suggest to us that. as in C1-NI0,

the albite results from secondary alteration

(Schuraytz and Sharpton, 1993). Similar

compositional and textural relations charac-

terize feldspar variations in the Y6-N 19 mes-

ostasis, although the variations in porosity

are more extreme.

DISCUSSION

Except for anomalous Ir enrichments in

several specimens attributed to nonuniform

dissemination of the projectile (Sharpton et

al., 1992; Schuraytz and Sharpton, 1994),

our analyses suggest that the melts were de-

rived exclusively from continental crust and

platform-sediment target lithologies, with

no evidence of a significant mantle or oce-

anic crustal signature. These results are sup-

ported by Sr, Nd, O, and Os isotopic studies

on the C1-N10 samples with regard to both

the continental affinity of the target rocks

(Blum et al., 1993) and the heterogeneous

distribution of up to 3% meteoritic contam-

ination (Koeberl et al., 1994). Considering

current constraints on excavation depth

(15-25 km) of the Chicxulub impact event

(Sharpton et al., 1994b) and the potential

lithologic diversity within this volume, the

observed chemical variability is rather small,

in keeping with the gross compositional ho-

mogeneity of melt rocks from other terres-

trial impact structures, such as Manicoua-

gan (Grieve and Floran, lt_78) and West

Clearwater (Simonds et al., 1978). However,

given that these few specimens represent an

inordinately small sampling of the upper

-100 m of known melt rock, the limited

compositional range should be regarded as

tentative, as should comparisons with

smaller structures where the upper part of

the melt sequence has been eroded. The

small variations in bulk composition (e.g.,

SiO2, CaO, Na20, Sr, and HREEs) suggest

that, compared to those from C1-N10, the

melt rocks from Y6 assimilated a greater

proportion of platform-sediment target

rocks relative to silicate basement. Compo-

sitional differences among augite and plagi-

oclase phenocrysts (the principal silicate liq-

uidus phases) also imply primary variations

in melt chemistry. The inverse correlation

between clast abundance and matrix grain

size (cf. Figs. 1A and ID) indicates a sub-
stantial difference from site to site in the

thermal regimes of the melts; this difference,

together with the compositional differences,

suggests that the C1-N10 samples were de-

rived from a zone of deeper melting and

protracted cooling.

Although the phenocrysts preserve clear

evidence of igneous crystallization, it ap-

pears that secondary mineralization due to

percolation of hydrothermal fluids through
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Figure 3. X-ray maps showing oscillatory zon-

ing of Co (A) and Ni (B) in pyrite from Cl-N10

(width of view = 150 ixm). Microprobe analy-

ses reveal that zone of highest Ni (1.1 wt%) is

relatively depleted in Co (0.6 wt%), whereas

highest Co (3.9 wt%) corresponds to 0.2 wt%
Ni.

the porous mesostasis was an integral pro-

cess in the evolution of these rocks. All our

specimens show some level of alteration, al-

though 4°Ar/3"Ar determinations indicate

that C1-N10 is least affected (Sharpton et

al., 1992). Kring and Boynton (1993) argued

that evidence of hydrothermal alteration in

Y6-N 17 is limited to quartz and possibly an-

hydrite veins. Despite their claims to the

contrary, the melt-rock groundmass is per-

vasively affected by alteration. Even the

least altered samples from CI-NI0 contain

anhedral albite (->Ab,_,_), K-feldspar, quartz,

epidote, chlorite, and yet-to-be determined

phyllosilicates, as well as pyrite and chal-

copyrite. The pyrites are significantly en-

riched in Co, Ni, Au, As, and Sb (Schuraytz

and Sharpton, 1994; Schuraytz et al., 1994)

and show oscillatory zoning (Fig. 3) similar

to pyrites observed in hydrothermal ore de-

posits (Fleet et al., 1989), indicating episodic

variations in the composition of circulating

fluids over the course of sulfide-mineral

growth.

At the Sudbury structure, Ontario, the

breccias and melt bodies within the Onaping

Formation exhibit many textural and min-

eralogical similarities to the Chicxulub rocks

described above, including extensive alter-

ation of plagioclase to albite, secondary epi-

dote, chlorite, and minor, but ubiquitous

sulfide mineralization (Muir and Peredery,

1984). Muir noted that sulfides in the sub-

layer of the Sudbury Igneous Complex are

similar to those occurring throughout the

Onaping Formation, whereas Peredery re-

garded the majority of these sulfides to be

due to secondary replacement. The origin of

the metals in these sulfides is unknown;

however, Allen et al. (1982) cited secondary

silicate and clay mineralization within the

Onaping as evidence of impact-induced hy-

drothermal alteration. Although the rela-

tion between sulfide genesis within the

Onaping Formation and other parts of the

Sudbury Igneous Complex is not completely

understood, potential similarities between

sulfide mineralization in the Onaping and

in melt rocks from Chicxulub may signal

the possibility of more extensive strategic

resources elsewhere at the Chicxulub

structure.
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